Mobile Robot Kinematics

Prof. Matthew Spenko
MMAE 540: Introduction to Robotics
Illinois Institute of Technology

Mobile Robot Kinematics

Typical Mobile Robot Types

Ackermann Steered Vehicles

Differential Drive Robots

- Popular and common
- 0 turn radius at 0 velocity
- Turn radius is function of velocity

Skid Steered Mobile Robots

- Must induce slip to turn

Example: Differential Drive Kinematics

- Given
- Wheel radius, R
- Wheel angular velocity, ω

- Constraints
${ }_{n} \mathbf{v}_{1}=\omega_{1} R \hat{\mathbf{b}}_{x}$
About the b_{x} axis

N-observed of point 2

$$
\begin{array}{ll}
\text { velocity } & \text { Angular velocity } \\
& \text { Of point } 2 * R
\end{array}
$$

- Find the forward kinematic model:

$$
\dot{\xi}=\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]
$$

Example: Differential Drive Kinematics

- Solve for heading angle velocity

$$
\begin{aligned}
{ }_{n} \mathbf{v}_{1} & ={ }_{n} \mathbf{v}_{2}+{ }_{n} \omega_{B} \times \mathbf{r}_{1 / 2} \\
\omega_{1} R \hat{\mathbf{b}}_{x} & =\omega_{2} R \hat{\mathbf{b}}_{x}+\operatorname{det}\left|\begin{array}{ccc}
\hat{\mathbf{b}}_{x} & \hat{\mathbf{b}}_{y} & \hat{\mathbf{b}}_{z} \\
0 & 0 & \dot{\theta} \\
0 & -2 l & 0
\end{array}\right| \\
\dot{\theta} & =\frac{R\left(\omega_{1}-\omega_{2}\right)}{2 l}
\end{aligned}
$$

Example: Differential Drive Kinematics

- Solve for velocity

$$
{ }_{n} \mathbf{v}_{p}={ }_{n} \mathbf{v}_{1}+{ }_{n} \omega_{B} \times \mathbf{r}_{p / 1}
$$

$$
=\omega_{1} R \hat{\mathbf{b}}_{x}+\operatorname{det} \left\lvert\, \begin{array}{ccc}
\hat{\mathbf{b}}_{x} & \hat{\mathbf{b}}_{y} & \hat{\mathbf{b}}_{z} \\
0 & 0 & \frac{R\left(\omega_{1}-\omega_{2}\right)}{2 l} \\
0 & l & 0
\end{array}\right.
$$

$$
=\frac{R\left(\omega_{1}+\omega_{2}\right)}{2} \hat{\mathbf{b}}_{x}
$$

Example: Differential Drive Kinematics

$$
\begin{array}{r}
\dot{\xi}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right] \quad{ }_{n} \mathbf{v}_{p}=\frac{R\left(\omega_{1}+\omega_{2}\right)}{2} \hat{\mathbf{b}}_{x} \\
\dot{\theta}=\frac{R\left(\omega_{1}-\omega_{2}\right)}{2 l}
\end{array}
$$

Example: Differential Drive Kinematics

- Transform ${ }_{\mathrm{n}} \mathbf{v}_{\mathrm{p}}$ into the inertial frame to obtain \dot{x}, \dot{y}

$$
\begin{array}{c|ccc}
{ }^{n} \mathbf{R}^{b} & \hat{\mathbf{b}}_{x} & \hat{\mathbf{b}}_{y} & \hat{\mathbf{b}}_{z} \\
\hline \hat{\mathbf{n}}_{x} & \cos \theta & -\sin \theta & 0 \\
\hat{\mathbf{n}}_{y} & \sin \theta & \cos \theta & 0 \\
\hat{\mathbf{n}}_{z} & 0 & 0 & 1 \\
\dot{\xi}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]={ }^{n} \mathbf{R}^{b}\left[\begin{array}{c}
\frac{R\left(\omega_{1}+\omega_{2}\right)}{2} \\
0 \\
\frac{R\left(\omega_{1}-\omega_{2}\right)}{2 l}
\end{array}\right]
\end{array}
$$

Mini Quiz

- Working alone, answer the following:
- Schematically draw an Ackermann-Steered vehicle, differential drive vehicle, and skid-steered vehicle
- What is the difference between a differential drive and skid steered vehicle?
- Describe all of the terms in:

$$
\dot{\xi}=\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]={ }^{n} \mathbf{R}^{b}\left[\begin{array}{c}
\frac{R\left(\omega_{1}+\omega_{2}\right)}{2} \\
0 \\
\frac{R\left(\omega_{1}-\omega_{2}\right)}{2 l}
\end{array}\right]
$$

- After you are done, discuss your results with your neighbor

Generalized Fixed Wheel Kinematics

Generalized Fixed Wheel Kinematics

- Define the rotation matrices

${ }^{b} \mathbf{R}^{n}$	$\hat{\mathbf{n}}_{x}$	$\hat{\mathbf{n}}_{y}$
$\hat{\mathbf{b}}_{x}$	$\cos \theta$	$\sin \theta$
$\hat{\mathbf{b}}_{y}$	$-\sin \theta$	$\cos \theta$

${ }^{c} \mathbf{R}^{b}$	$\hat{\mathbf{b}}_{x}$	$\hat{\mathbf{b}}_{y}$
$\hat{\mathbf{c}}_{x}$	$\cos (\alpha+\beta)$	$\sin (\alpha+\beta)$
$\hat{\mathbf{c}}_{y}$	$-\sin (\alpha+\beta)$	$\cos (\alpha+\beta)$

${ }^{c} \mathbf{R}^{n}$	$\hat{\mathbf{n}}_{x}$	$\hat{\mathbf{n}}_{y}$
$\hat{\mathbf{c}}_{x}$	$\mathrm{c}_{\alpha \beta \theta}$	$s_{\alpha \beta \theta}$
$\hat{\mathbf{c}}_{y}$	$-s_{\alpha \beta \theta}$	$\mathrm{c}_{\alpha \beta \theta}$

Generalized Fixed Wheel Kinematics

- Find the velocity of the wheel

$$
\begin{aligned}
& { }_{n} \mathbf{v}_{\text {wheel }}={ }_{n} \mathbf{v}_{p}+\frac{{ }^{B} d \mathbf{r}_{\text {wheel } / p}}{d t}+{ }_{n} \boldsymbol{\omega}_{b} \times \mathbf{r}_{\text {wheel } / p} \\
& -\dot{\phi} r \hat{\mathbf{c}}_{y}=\dot{x} \hat{\mathbf{n}}_{x}+\dot{y} \hat{\mathbf{n}}_{y}+\frac{{ }^{B} d\left(l \cos \alpha \hat{\mathbf{b}}_{x}+l \sin \alpha \hat{\mathbf{b}}_{y}\right)}{d t}+{ }_{N} \omega_{B} \times\left(l \cos \alpha \hat{\mathbf{b}}_{x}+l \sin \alpha \hat{\mathbf{b}}_{y}\right)
\end{aligned}
$$

$$
-\dot{\phi} \hat{\mathbf{c}}_{y}=\dot{x} \hat{\mathbf{n}}_{x}+\dot{y} \hat{\mathbf{n}}_{y}+\operatorname{det}\left|\begin{array}{ccc}
\hat{\mathbf{b}}_{x} & \hat{\mathbf{b}}_{y} & \hat{\mathbf{b}}_{z} \\
0 & 0 & \dot{\theta} \\
l \cos \alpha & l \sin \alpha & 0
\end{array}\right|
$$

$$
-\dot{\phi} r \hat{\mathbf{c}}_{y}=\dot{x} \hat{\mathbf{n}}_{x}+\dot{y} \hat{\mathbf{n}}_{y}-l \dot{\theta} \sin \alpha \hat{\mathbf{b}}_{x}+l \dot{\theta} \cos \alpha \hat{\mathbf{b}}_{y}
$$

Generalized Fixed Wheel Kinematics Continued

- Need this in the C-basis

$$
-\dot{\phi} r \hat{\mathbf{c}}_{y}=\dot{x} \hat{\mathbf{n}}_{x}+\dot{y} \hat{\mathbf{n}}_{y}-l \dot{\theta} \sin \alpha \hat{\mathbf{b}}_{x}+l \dot{\theta} \cos \alpha \hat{\mathbf{b}}_{y}
$$

${ }^{c} \mathbf{R}^{b}$	$\hat{\mathbf{b}}_{x}$	$\hat{\mathbf{b}}_{y}$
$\hat{\mathbf{c}}_{x}$	$\cos (\alpha+\beta)$	$\sin (\alpha+\beta)$
$\hat{\mathbf{c}}_{y}$	$-\sin (\alpha+\beta)$	$\cos (\alpha+\beta)$

${ }^{c} \mathbf{R}^{n}$	$\hat{\mathbf{n}}_{x}$	$\hat{\mathbf{n}}_{y}$
$\hat{\mathbf{c}}_{x}$	$\mathrm{c}_{\alpha \beta \theta}$	$s_{\alpha \beta \theta}$
$\hat{\mathbf{c}}_{y}$	$-s_{\alpha \beta \theta}$	$\mathrm{c}_{\alpha \beta \theta}$

$$
\begin{aligned}
& -\dot{\phi} r \hat{c}_{y}=\dot{x} c_{\alpha \beta \theta} \hat{\mathbf{c}}_{x}-\dot{x} s_{\alpha \beta \theta} \hat{\mathbf{c}}_{y}+\dot{y} s_{\alpha \beta \theta} \hat{\mathbf{c}}_{x} \\
& +\dot{y} c_{\alpha \beta \theta} \hat{\mathbf{c}}_{y}-l \dot{\theta} s_{\alpha} c_{\alpha \beta} \hat{\mathbf{c}}_{x}+l \dot{\theta} s_{\alpha} s_{\alpha \beta} \hat{\mathbf{c}}_{y}+l \dot{\theta} c_{\alpha} s_{\alpha \beta} \hat{\mathbf{c}}_{x}+l \dot{\theta} c_{\alpha} c_{\alpha \beta} \hat{\mathbf{c}}_{y}
\end{aligned}
$$

- The c_{y} component gives the pure rolling constraint

$$
\begin{aligned}
-\dot{\phi} r & =-\dot{x} s_{\alpha \beta \theta}+\dot{y} c_{\alpha \beta \theta}+l \dot{\theta}\left(s_{\alpha} s_{\alpha \beta}+c_{\alpha} c_{\alpha \beta}\right) \\
-\dot{\phi} r & =-\dot{x} s_{\alpha \beta \theta}+\dot{y} c_{\alpha \beta \theta}+l \dot{\theta}\left(c_{\beta}\right)
\end{aligned}
$$

Generalized Fixed Wheel Kinematics Continued

- Rearrange:

$$
\begin{aligned}
-\dot{\phi} r & =-\dot{x} s_{\alpha \beta \theta}+\dot{y} c_{\alpha \beta \theta}+l \dot{\theta}\left(c_{\beta}\right) \\
\dot{\phi} r & =\left[\begin{array}{lll}
s_{\alpha \beta} & -c_{\alpha \beta} & -l c_{\beta}
\end{array}\right]^{b} R^{n}\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]
\end{aligned}
$$

- Verify:

$$
\begin{aligned}
& \dot{\phi} r=\left[\begin{array}{ccc}
\mathrm{s}_{\alpha \beta} c_{\theta}+c_{\alpha \beta} s_{\theta} & \mathrm{s}_{\alpha \beta} s_{\theta}-c_{\alpha \beta} c_{\theta} & -l c_{\beta}
\end{array}\right]\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right] \\
& s_{\alpha \beta \theta}
\end{aligned}
$$

- Why? Separates wheels (each with its own α and β) from body reference frame

Generalized Fixed Wheel Kinematics Continued

- Now just the c_{x} component

$$
\begin{aligned}
& -\dot{\phi} r \hat{c}_{y}=\dot{x} c_{\alpha \beta \theta} \hat{\mathbf{c}}_{x}-\dot{x} s_{\alpha \beta \theta} \hat{\mathbf{c}}_{y}+\dot{y} s_{\alpha \beta \theta} \hat{\mathbf{c}}_{x} \\
& +\dot{y} s_{\alpha \beta \theta} \hat{\mathbf{c}}_{y}-l \dot{\theta} s_{\alpha} c_{\alpha \beta} \hat{\mathbf{c}}_{x}+l \dot{\theta} s_{\alpha} s_{\alpha \beta} \hat{\mathbf{c}}_{y}+l \dot{\theta} c_{\alpha} s_{\alpha \beta} \hat{\mathbf{c}}_{x}+l \dot{\theta} c_{\alpha} c_{\alpha \beta} \hat{\mathbf{c}}_{y} \\
& 0=\left[\begin{array}{lll}
c_{\alpha \beta} & s_{\alpha \beta} & l s_{\beta}
\end{array}\right]^{b} R^{n}\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]
\end{aligned}
$$

- Gives the no sideslip constraint
- Steerable wheel = same constraints, but now $\beta=\beta(t)$

Caster wheel

- Rolling constraint is the same
- Sliding constraint
$0=\left[\begin{array}{lll}c_{\alpha \beta} & s_{\alpha \beta} & d+l s_{\beta}\end{array}\right]^{b} R^{n}\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]$
- An omnidirectional system because for all

$$
\dot{\xi}=\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]
$$

there exists some value of $\dot{\beta}$ and $\dot{\phi}$ such that the constraints are met

Mobile Robot Kinematics Mini Quiz

- Describe what a rolling and no side-slip constraint physically mean
- Describe the terms in the following constraint equation:

$$
0=\left[\begin{array}{lll}
c_{\alpha \beta} & s_{\alpha \beta} & l s_{\beta}
\end{array}\right]^{b} R^{n}\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]
$$

- What type of constraint is this (i.e. fixed, steerable, rolling, nosideslip, caster)?

Mobile Robot Chassis Constraints

- Now have all of the constraints
- Can then compute constraints of entire robot chassis
- Combine all kinematic constraints from each wheel
- No need to consider caster wheels, only standard and steerable wheels

Mobile Robot Chassis constraints

- Suppose the robot has N standard wheels
- N composed of N_{f} fixed wheels and N_{s} steerable wheels
- Let $\beta_{s}(t)$ be the variable steering angles of the steerable wheels
- Let β_{f} be the fixed steering angel of the fixed wheels
- Let $\phi_{f}(t)$ be the rotational positon of the steerable wheels
- Let $\phi_{s}(t)$ be the rotational position of the fixed wheels
- Let

$$
\phi(t)=\left[\begin{array}{l}
\phi_{f}(t) \\
\phi_{s}(t)
\end{array}\right]
$$

Rolling Constraint

- The rolling constraints can now be written as:

$$
\mathbf{J}_{1}\left(\beta_{s}\right) \mathbf{R} \dot{\xi}_{I}-\mathbf{J}_{2} \dot{\phi}=\mathbf{0}
$$

Matrix represents all projections for all wheels to their motions along the individual wheel planes

Constant Diagonal
NxN matrix whose entrants are:
$\mathrm{N}_{\mathrm{f}} \times 3 \quad\left[\begin{array}{ccc}r_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & r_{n}\end{array}\right]$

$$
\mathbf{J}_{1}\left(\beta_{s}\right)=\left[\begin{array}{c}
\mathbf{J}_{1 f} \\
\mathbf{J}_{1 s}\left(\beta_{s}\right)
\end{array}\right]_{\mathrm{N}_{\mathrm{s}} \times 3}
$$

all wheels must spin about the horizontal axis an appropriate amount so that rolling occurs

No Side Slip Constraint

- Can use the same technique to get the no side slip constraint:

$$
\mathbf{C}_{1}\left(\boldsymbol{\beta}_{s}\right) \mathbf{R}(\theta) \dot{\xi}_{I}=0
$$

- Where:

$$
\mathbf{C}_{1}\left(\beta_{s}\right)=\left[\begin{array}{c}
\mathbf{C}_{1 f} \\
\mathbf{C}_{1 s}\left(\beta_{s}\right)
\end{array}\right]
$$

- Combine to yield full set of kinematic constraints:

$$
\left[\begin{array}{l}
\mathbf{J}_{1}\left(\beta_{s}\right) \\
\mathbf{C}_{1}\left(\beta_{s}\right)
\end{array}\right] \mathbf{R}(\theta) \dot{\xi}_{I}=\left[\begin{array}{c}
\mathbf{J}_{2}(\phi) \\
\mathbf{0}
\end{array}\right]
$$

Example: Differential Drive Robot

- Two fixed wheels
- Fixed wheel constraint equations:
$0=\left[\begin{array}{lll}s_{\alpha \beta} & -c_{\alpha \beta} & -l c_{\beta}\end{array}\right]^{b} R^{n}\left[\begin{array}{l}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]-\dot{\phi} r$

$0=\left[\begin{array}{lll}c_{\alpha \beta} & s_{\alpha \beta} & l s_{\beta}\end{array}\right]^{b} R^{n}\left[\begin{array}{l}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]$
- Wheel 1

$$
\alpha_{1}=-\frac{\pi}{2} \quad \beta_{1}=\pi
$$

- Wheel 2

$$
\alpha_{2}=\frac{\pi}{2} \quad \beta_{2}=0
$$

$$
\begin{aligned}
& 0=\left[\begin{array}{lll}
s_{\alpha \beta} & -c_{\alpha \beta} & -l c_{\beta}
\end{array}\right]^{b} R^{n}\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]-\dot{\phi} r \\
& 0=\left[\begin{array}{lll}
c_{\alpha \beta} & s_{\alpha \beta} & l s_{\beta}
\end{array}\right]^{b} R^{n}\left[\begin{array}{l}
\alpha_{2}=\frac{\pi}{2} \\
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{ll}
\mathbf{J} \\
\mathbf{C} & \left.-\left[\begin{array}{ccc}
\sin \left(-\frac{\pi}{2}+\pi\right) & -\cos \left(-\frac{\pi}{2}+\pi\right) & -l \cos \pi \\
\sin \left(\frac{\pi}{2}+0\right) & -\cos \left(\frac{\pi}{2}+0\right) & -l \cos 0 \\
\cos \left(\frac{\pi}{2}+0\right) & \sin \left(\frac{\pi}{2}+0\right) & l \sin 0
\end{array}\right]{ }^{b} \mathbf{R}^{N} \dot{\xi}_{I}=\left[\begin{array}{c}
r \dot{\phi}_{1} \\
r \dot{\phi}_{2} \\
0
\end{array}\right], ~\right]
\end{array}
$$

$$
\left[\begin{array}{ccc}
1 & 0 & l \\
1 & 0 & -l \\
0 & 1 & 0
\end{array}\right]{ }^{b} \mathbf{R}^{N} \dot{\xi}_{I}=\left[\begin{array}{c}
r \dot{\phi}_{1} \\
r \dot{\phi}_{2} \\
0
\end{array}\right]
$$

Only including 1 no-side slip constraint because $2^{\text {nd }}$ constraint is identical

Mobile Robot Kinematics

Kinematic Mobility

Degree of Mobility

- Look at the constraint equation for no side slip
- Fixed wheel:

$$
\mathbf{C}_{1 f}{ }^{b} \mathbf{R}^{n} \dot{\xi}_{I}=0
$$

- Steerable wheel: $\mathbf{C}_{1 s}\left(\beta_{s}\right)^{b} \mathbf{R}^{n} \dot{\xi}_{I}=0$

$$
{ }^{b} \mathbf{R}^{n} \dot{\xi}_{I}=0
$$

- For either constraint to be satisfied, the "motion vector" must belong to the null space of the "projection matrix"

$$
\mathbf{C}_{1 s}\left(\beta_{s}\right)
$$

- The null space of $\mathbf{C}_{1 s}\left(\beta_{s}\right)$ is the space \mathbf{N} such that for any vector:

$$
n \in N: C_{1}\left(\beta_{s}\right) n=0
$$

Geometric Meaning

- For the constraints to be satisfied the robot must have an instantaneous center of rotation
- The ICR is the point (or set of points) of which the body-observed and Newtonian-observed velocity is the same

Implications of Instantaneous Center of Rotation

- Robot mobility is a function constraint \#, not wheel \#
- Ackermann steering $=4$ wheels, 3 constraints
- Single track (bicycle) $=2$ wheels, 2 constraints
- Differential drive $=2$ wheels, but 1 constraint
- Robots chassis' kinematics = function of the set of independent constraints from all standard wheels
- Related to constraint matrix rank = \# of individual constraints
- Higher rank = lower mobility
- Example: unicycle

$$
\begin{gathered}
\mathbf{C}_{1}\left(\beta_{s}\right)=\left[\begin{array}{l}
\mathbf{C}_{1 f} \\
\mathbf{C}_{1 s}
\end{array}\right] \quad \text { empty } \\
\mathbf{C}_{1}\left(\beta_{s}\right)=\left[\begin{array}{lll}
\cos (\alpha+\beta) & \sin (\alpha+\beta) & l \sin \beta
\end{array}\right] \quad \text { Rank }=1
\end{gathered}
$$

Example 2

- Differential Drive

$$
\begin{gathered}
\mathbf{C}_{1}\left(\beta_{s}\right)=\left[\begin{array}{ccc}
c_{\alpha_{1}} & s_{\alpha_{1}} & 0 \\
c_{\alpha_{1}+\pi} & s_{\alpha_{1}+\pi} & 0
\end{array}\right] \\
\alpha_{1}=-\frac{\pi}{2} \quad \beta_{1}=\pi \quad \alpha_{1}=\frac{\pi}{2} \quad \beta_{1}=0 \\
\mathbf{C}_{1}\left(\beta_{s}\right)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

- 2 constraints, but rank = 1
- In general:
- If rank of $\mathbf{C}_{1 f}>1$ then vehicle can only follow a curved or straight path
- Not very interesting
- Most systems have fixed and steerable wheels so

$$
0<\operatorname{rank}\left[\mathbf{C}_{1}\left(\beta_{s}\right)\right] \leq 3 \quad \begin{aligned}
& \text { Corresponds to a completely } \\
& \text { degenerate vehicle that } \\
& \text { can't move }
\end{aligned}
$$

Degree of Mobility

- Definition:

Dimension of the null space

- Mobility must lie between 0 and 3
- Examples
- Differential drive, degree of mobility $=2$ (1 constraint)
- Bicycle, degree of mobility = 1 (2 constraints)

Degree of Steerability and Maneuverability

- Degree of Steerability:

$$
\delta_{s} \equiv \operatorname{rank}\left[\mathbf{C}_{1 s}\left(\beta_{s}\right)\right]
$$

- An increase in the degree of steerability = more degrees of steering freedom such that a standard wheel can have both low mobility and high steerability
- Maneuverability = degrees of freedom:

$$
\delta_{M}=\delta_{m}+\delta_{s}
$$

- Maneuverability:
- 3 = holonomic
- 2 or less = non-holonomic

Examples

