Control of Robotic Manipulators

Adaptive Control

Professor Matthew Spenko

MMAE 540: Introduction to Robotics
What might be the problem with controlling this robot?
Control of Robotic Manipulators

Adaptive Control
1-D Example

• Equations of motion

\[J\ddot{q} + b\dot{q} |\dot{q}| + mgl \sin(q) = \tau \]

• Two states \(q \) and \(\dot{q} \).
• Define:

\[\ddot{q}(t) = q(t) - q_d(t) \]
\[\dot{q}(t) = \dot{q}(t) - \dot{q}_d(t) \]

• Want:

\[\ddot{q}(t) \to 0 \text{ and } \dot{q}(t) \to 0. \]

• But: \(J, b, m, g, \) and \(l \) are unknown!

• Make things easier, combine to unknown to \(mgl \)
1-D Example Continued

- Unknown vector: \[\mathbf{a} = \begin{bmatrix} J & b & mgl \end{bmatrix}^T \]

- Introduce a “sliding variable”
 \[s = \dot{q} + \lambda \ddot{q} \]
 where \(\lambda > 0 \)

- \(s \) is a weighted sum of the position error and the velocity error

- For tracking to be achievable using a finite control signal, the initial desired state must be
 \[\mathbf{q}_d(0) = \mathbf{q}(0) \]

- Why?

- In a 2nd order system the position or velocity cannot “jump”
 - Any desired trajectory feasible from time \(t=0 \) must start with the same position and velocity of the plant
Given the initial condition $q_d(0) = q(0)$

The tracking problem is equivalent to that of remaining on the surface, $s(t)$ for all $t > 0$.

Problem of tracking a n-dimensional vector q_d is replaced by a 1st order stabilization problem in s

Thus $s \to 0$

Implies that $\dot{q} = -\lambda \ddot{q}$

Implies that $\dot{q} \to 0$ and $\ddot{q} \to 0$

Why? Because those are the only possible solutions

Easier to prove $s \to 0$ than to prove two things approach 0
Example Continued

• Introduce new variable \(\dot{q}_r = \dot{q}_d + \lambda \ddot{q} \)

• So that:
 \[
 s = \dot{q} - \dot{q}_d + \lambda \ddot{q} \\
 s = \dot{q} - \dot{q}_r
 \]

• Choose a Lyapunov function:
 \[
 V = \frac{1}{2} J s^2 \\
 \dot{V} = s J \dot{s}
 \]

• Substitute the system dynamics:
 \[
 \dot{V} = s J \dot{s} \\
 = s J (\dddot{q} - \dddot{q}_r) \\
 = s (\tau - J \dddot{q}_r - b \dddot{q} |\dddot{q}| - mgl \sin q) \\
 = s \left(\tau - \begin{bmatrix} \dddot{q}_r & \dddot{q} |\dddot{q}| & \sin q \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \right) \\
 = s (\tau - Ya)
 \]
Mini-quiz

• Why does proving that s approaches 0 imply that the system is asymptotically stable?

• What does the \mathbf{a} vector represent?

• What does the \mathbf{Y} vector represent?
Example Continued

\[\dot{V} = s(\tau - Ya) \]

- If \(a \) is known, then choose: \(\tau = Ya - ks \)
- Yields: \[\dot{V} = s(Ya - ks - Ya) = -ks^2 \]
- Negative definite
 - Globally asymptotically stable!
 - Not quite yet...
 - Why can’t we just stop here?
- Globally asymptotically stable = converge from anywhere to the \textit{equilibrium state}
- What is the equilibrium state of \(s \)?
- Need to show that \(s \to 0 \) as \(t \to \infty \)
Set point vs trajectory control

• In previous system joint velocity approached 0 because that was the goal
 • Set point trajectory
• Can’t assume that anymore because:
 • Trajectory control
 • Instead show that $\dot{q} \rightarrow q_d$
• To do this, show that $\dot{V} \rightarrow 0$ as $t \rightarrow \infty$
• Can’t use Lasalle’s theorem b/c system is not autonomous
• Need Barbalat’s Lemma
Barbalat’s Lemma

- Given a function $f(t)$ that is:
 - differentiable
 - has a limit $f(t) \to L$
 - has a time derivative that is uniformly continuous (i.e. \ddot{f} exists and is bounded)

- Then:
 - $\dot{f}(t) \to 0$ as $t \to \infty$
Barbalat’s Lemma Continued

• Why do we need the third condition (uniform continuity)?
• Because $f(t)$ simply having a limit does not imply that $\dot{f}(t) \to 0$
• Ex:

 $$f(t) = e^{-t} \sin (e^{2t})$$

• Sinusoidal decrescence to zero in an exponential envelope
• \dot{f} is actually infinite (i.e. faster and faster oscillations)

• If \ddot{f} exists and is bounded, then \dot{f} is uniformly continuous
Lyapunov-like Lemma that builds off of Barbalat’s lemma

- If $V(x, t)$ has the following properties
 - $V(x, t)$ is lower bounded
 - $\dot{V}(x, t)$ is negative semi-definite
 - $\dot{V}(x, t)$ is uniformly continuous ($\dot{V}(x, t)$ is bounded)
- Then $\dot{V}(x, t) \to 0$ as $t \to \infty$
• For now we are assuming we know the a parameters

\[\dot{V} = -ks^2 \]

\[\ddot{V} = -2ks \dot{s} \]

• Compute

• Is that bounded?

• A function is bounded if there exists some number, M, such that

\[|f(x)| \leq M \]

• For all x in some set X
Pendulum Example Continued

• So is: \[\ddot{V} = -2k s \dot{s} \]
 \[= -2k (\dot{q} + \lambda \ddot{q}) (\ddot{q} + \lambda \ddot{q}) \]

• Bounded?

• Yes, because we can choose what \(q_d \) and \(\dot{q}_d \) are!

• As long as we choose them to be bounded, \(s \) and \(\dot{s} \) will be bounded
Mini Quiz

• What is Barbalat’s Lemma?
But what if we don’t know a?

- Make an estimate, \hat{a}
- Let $\tilde{a} = \hat{a} - a$
- Use control law: $\tau = Y\hat{a} - ks$
- Find derivative:
 \[\dot{V} = s(\tau - Ya) = s(-Y\hat{a} - ks - Ya) = -ks^2 + sY\tilde{a} \]
- Not negative definite!
Try again!

- Remember, Lyapunov functions are sufficient, but not necessary.
- Try another Lyapunov function \(V = \frac{1}{2} Js^2 + \frac{1}{2} \tilde{a} P^{-1} \tilde{a} \)
- Where \(P \) is symmetric and constant.
- \(\tilde{a} \) cannot be constant (more later).
- Thus \(\dot{a} = \dot{a}(t) \)
- Yields:

\[
V = \frac{1}{2} Js^2 + \frac{1}{2} \tilde{a} P^{-1} \tilde{a} \\
\dot{V} = s \left(\tau - Y \dot{a} \right) + \dot{a}^T P^{-1} \tilde{a} \\
= -ks^2 + \left(sY + \dot{a}^T P^{-1} \right) \tilde{a}
\]
Continued

\[
\dot{V} = -ks^2 + \left(sY + \hat{a}^T P^{-1} \right) \hat{a}
\]

- We choose what we want \(\hat{a} \) to be!
- Let \(\hat{a} = -PY^T s \)
- Yields:
 \[
 \dot{V} = -ks^2 + \left(sY - (PY^T s)^T P^{-1} \right) \hat{a}
 \]
 \[
 = -ks^2
 \]
- Negative definite + Barbalat’s Lemma = globally asymptotically stable
What Just Happened?

• Used Lyapunov’s method to **find** a control law that would be stable
• Opposed to using Lyapunov’s method to **prove** a known control law is stable
• Best control law for system?
 • Not necessarily
 • \(\tau = Y\hat{a} - ks \)

 Estimate of:

\[
Y = \begin{bmatrix}
\dot{q}_r & q & |\dot{q}| & \sin q
\end{bmatrix}
\]

\[
a = \begin{bmatrix}
J & b & mgl
\end{bmatrix}^T
\]

• How to break up \(Y \) and \(a \) can be tricky
 • More than one way
 • \(k \) term represents gain
 • \(\hat{a} = -PY^T \) represents how fast estimate of parameters changes
Apply to n-link Manipulator

\[
H\ddot{q} + C\dot{q} + g = \tau
\]

- Let

\[
s = \dot{q} + \lambda\ddot{q}
\]
\[
\dot{q}_r = \dot{q}_d - \lambda\ddot{q}
\]
\[
\ddot{a}(t) = \dot{a}(t) - a
\]
\[
\dot{a}(t) = \dot{a}(t)
\]

\[
s = \dot{q} - \dot{q}_r
\]

- Choose

\[
V = \frac{1}{2} s^T H s + \frac{1}{2} \ddot{a}^T P^{-1} \ddot{a}
\]
N-link manipulator example continued

\[V = \frac{1}{2} s^T H s + \frac{1}{2} \tilde{a}^T P^{-1} \tilde{a} \]

- Positive Definite?
- Negative Definite?

\[\dot{V} = s^T H \dot{s} + \frac{1}{2} s^T \dot{H} s + \frac{1}{2} \tilde{a}^T P^{-1} \tilde{a} \]

\[= s^T (H \ddot{q} - H \ddot{q}_r) + \frac{1}{2} s^T \dot{H} s + \tilde{a}^T P^{-1} \dot{a} \]

\[= s^T (\tau - H \ddot{q}_r - C \ddot{q} - g) + \frac{1}{2} s^T \dot{H} s + \tilde{a}^T P^{-1} \dot{a} \]

\[= s^T (\tau - H \ddot{q}_r - C \ddot{q} - g) + \frac{1}{2} s^T \dot{H} s + \tilde{a}^T P^{-1} \dot{a} \]

Cancel b/c of skew-symmetry
N-link manipulator example continued

\[\dot{V} = s^T (\tau - H\ddot{q}_r - C\dot{q}_r - g) + \hat{a}^T P^{-1} \hat{a} \]

- Let
 \[-Ya = -H\ddot{q}_r - C\dot{q}_r - g \]
- Create a control law:
 \[\tau = Y\hat{a} - K_D s \]
- Let our estimate of \(a \) be:
 \[\hat{a} = -PY^T s \]
- then
 \[\dot{V} = s^T (Y\hat{a} - K_D s - Ya) - \hat{a}^T P^{-1} PY^T s \]
 \[= -s^T K_D s \]
Some practical notes on Homework

- Difficulty lies in determining Y and a
- Long and frustrating
- Write out equation of motion and look for common terms
- Should be able to do it with 5 terms
- More than 5 makes things more difficult
Example: Adding Viscous Friction

\[H(q) \ddot{q} + C(q, \dot{q}) \dot{q} + D \dot{q} + g(q) = \tau \]

- Could define \(Y_a \) as \(H\ddot{q}_r + C\dot{q}_r + D\dot{q} + g \)
- Stable, but not optimal
- Instead, let: \(D\dot{q} = Ds + D\dot{q}_r \)
- So:
 \[H(q) \ddot{q} + C(q, \dot{q}) \dot{q} + D \dot{q} + g(q) = \tau - Ds \]
 \[H\ddot{q}_r + C\dot{q}_r + D\dot{q}_r + g = Y_a \]
- Yields:
 \[\dot{V} = -s^T (K_D + D) s \]